A Web-application to reformulate recipe through optimization: proof of concept
Romane Poinsoth, Matthieu Maillot, Rozenn Gazan, Florent Vieux

Introduction
Improving the nutritional quality of food products through reformulation is a key approach to improve diet quality and to reduce the prevalence of non-communicable diseases.

Objective
Provide a web application able to take into account impact of process when:
- Estimating the nutritional composition of processed foods
- Improving the nutritional content through recipe optimization

Materials and Methods

Description of the Web-app:

Recipe
Quantities of ingredients & cooking methods

Ingredients
Nutrient composition, retention & yield factors

Targets
User nutritional targets & ingredients constraints

Input
The web app was developed under R-Shiny package

EuroFIR guidelines were used to consider the impact of processes on food nutrients content

1 Based on linear programming, the optimization functionality automatically corrects the amount of ingredients to meet the selected nutritional targets and ingredients constraints

Output

1) Estimation of the nutritional content

2) Optimized recipe

Input: Recipe and ingredients information was taken from previous study. Targets were set to improve saturated fatty acids (<4g/100g), sodium (<360mg), fiber (>2.1g/100g) and proteins (>12% E) contents simultaneously while keeping acceptable proportions in amounts of milk, flour and eggs (same as in initial recipe).

Output: Nutri-Score was used as nutritional indicator for comparing nutritional quality of the initial and the optimized Bramborak recipes

Proof of concept:

Traditional Czech Bramborak dish

Results

1) Estimation of the nutritional content:
The initial Bramborak was ranked C according to the Nutri-score.

2) Optimized recipe:
The Web app suggests increasing amounts of garlic, wheat flour, eggs, and decreasing amounts of potatoes, lard and salt (Table 1).

The optimized Bramborak reaching nutritional targets was ranked B.

Table 1. Initial and optimized quantities of raw Bramborak ingredients, for 100g

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Initial (g)</th>
<th>Optimized (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>0.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>18.0</td>
<td>29.5</td>
</tr>
<tr>
<td>Eggs</td>
<td>3.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Potatoes</td>
<td>68.6</td>
<td>58.0</td>
</tr>
<tr>
<td>Lard</td>
<td>8.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Salt</td>
<td>0.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Conclusion
Organoleptic qualities of the optimized recipe were not taken into account but adding more constraints on the amount of ingredients could help to design a more acceptable recipe. This web-application needs to be expanded with additional nutrient compositions of ingredients and fine-tuned according to food industry needs.

Notes:
- "Machackova, Giertlova, Porubska, Roe, Ramos, Finglas. EuroFIR Guideline on calculation of nutrient content of foods for food business operators. Food chemistry. 2018"